
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Minimum-Stop Routing in the Hong Kong MTR

Graph: A Breadth-First Search Approach

Mahesa Fadhillah Andre – 13523140

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: mahesa0208@gmail.com, 13523140@std.stei.itb.ac.id

Abstract—Minimum-stop routing in transportation networks

is a crucial problem in planning efficient journeys. This paper

discusses the application of the Breadth-First Search (BFS)

algorithm to find routes with the minimum number of stops

between two stations in the Hong Kong MTR network, which is

modeled as an unweighted, undirected graph. BFS is selected

because it guarantees the discovery of the path with the minimum

number of nodes traversed in such graphs. The program is

implemented in Python, taking station and connection data in

JSON format as input. Experimental results show that BFS can

efficiently find minimum-stop routes for various station pairs in

the Hong Kong MTR network, with relatively fast execution

time. This paper also presents an analysis of the algorithm’s

complexity, testing results using real data, and a discussion of the

advantages and limitations of this approach in the context of

urban transportation.

Keywords—Breadth-First Search, minimum-stop routing,

graph, Hong Kong MTR, pathfinding algorithm Introduction

(Heading 1)

I. INTRODUCTION

Urban transportation plays a key role in supporting mobility
in large cities. Systems like buses, taxis, trains, and ride-hailing
services help reduce congestion and provide efficient ways for
people to travel within urban areas.

Urban transportation refers to the movement of people and
goods within an urban or metropolitan area. It serves as the
backbone of a city’s mobility, providing accessible, affordable,
and efficient means for commuting. Beyond individual
convenience, urban transportation systems contribute
significantly to a city’s economic growth, social connectivity,
and environmental sustainability. For many residents, these
systems offer a cost-effective and time-saving alternative to
private vehicles, helping to alleviate parking issues and reduce
carbon emissions.

Among the various forms of urban transportation, one of
the most effective and widely adopted solutions is the subway
or Mass Transit Railway (MTR) system. MTR systems are
designed to integrate seamlessly into the urban environment,
providing rapid and frequent services that can transport large
numbers of passengers across the city efficiently. Trains
typically arrive at stations at short intervals, often just minutes
apart, and operate for extended hours, from early morning to
late at night. This makes MTR systems highly dependable and

convenient for daily commuters, tourists, and businesses alike.
Moreover, by minimizing travel time and increasing transport
capacity, these systems play a crucial role in enhancing overall
productivity and supporting urban economies.

Despite their advantages, MTR systems in large cities
present unique challenges, particularly in route planning and
navigation. As cities expand and MTR networks grow more
complex, with dozens or even hundreds of stations
interconnected by multiple lines, navigating these networks can
become overwhelming, especially for new users or tourists.
Identifying the most efficient route between two stations is not
always straightforward. A common objective for travellers is to
find the path that minimizes the number of stops between their
starting point and destination, thereby reducing travel time and
unnecessary transfers.

This paper explores the Breadth-First Search (BFS)
algorithm as a solution to finding the minimum stops needed in
order to get from one station to another in an MTR system.
Hong Kong’s MTR network is used as the case study for this
solution. Hong Kong’s MTR system is well known for it’s
dense and extensive network, so it provides an excellent study
case to demonstrate this approach. Graph theory serves as the
foundation for representing this model. Nodes represent
stations in the network and the edges represent the connection
between each neighbouring stations in the network.

By modelling MTR as an unweighted, undirected graph and
applying the BFS algorithm, the paper will demonstrate an
effective method to find the minimum stops or routes to help
passengers navigate the complex network with ease.

II. THEORITICAL BASIS

A. Mass Transit Railway (MTR) as a Network

A Mass Transit Railway (MTR) system is one of the most

common forms of urban public transportation. This type of

system consists of multiple train lines that connect various

stations across a city or region. The stations serve as points

where passengers can board or leave the train, and the lines

provide direct connections between these stations. The

structure of an MTR system forms a complex network that is

designed to help people move efficiently from one location to

another.

mailto:13523140@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

To study and analyze the MTR network more clearly, the

system can be represented using a mathematical model. In this

model, each station is treated as a point or node, and each

direct connection between two stations is treated as a link or

line that joins the points. This way of representing the MTR

system helps to simplify the network into a structure that can

be examined using various techniques. This structure is what

is later referred to as a graph.

B. Graph Theory

A graph is a non-linear data structure that is used to

represent pairwise connections or relationships between

objects. In formal mathematical terms, a graph is written as G

= (V, E), where V is the set of vertices, or nodes, and E is the

set of edges that connect pairs of vertices. The vertices usually

stand for objects, entities, or points in a system, and are

commonly drawn as circles or dots in diagrams to make them

easy to identify. The edges represent the links or relationships

between these vertices and are drawn as lines connecting two

vertices. Graphs have become widely used because they can

model so many types of systems and networks found in real

life. For example, graphs are often used to model friendships

in social networks, stations in a railway system, cities

connected by roads, computers in a network, or websites

linked by hyperlinks. The flexibility of graphs makes them

useful in solving problems involving connectivity,

reachability, flow, or the shortest path between points. Graphs

are applied in many fields, including computer science,

engineering, biology, logistics, and many others where

relationships or interactions between parts of a system need to

be studied.

C. Simple Graph

A simple graph is one of the most basic forms of a graph.

This type of graph follows specific rules to keep its structure

clean and easy to work with. In a simple graph, no vertex

connects to itself, which means that self-loops are not allowed.

In addition, no two vertices are connected by more than one

edge, so between any pair of vertices, there is at most one

edge.

Fig 2.1 Simple Graphs

(Source: Graph (Part 1) Slide by Dr. Rinaldi Munir)

The edges in a simple graph are undirected, so the relationship

between two connected vertices is mutual. if vertex A is

connected to vertex B, then vertex B is connected to vertex A

in the same way. The edges also do not carry any weight or

numerical value; they only indicate that a connection exists.

Simple graphs are useful when the system being modeled only

requires information about whether a connection exists or not,

without needing to know anything about the strength, cost, or

direction of the connection. Simple graphs are often used in

cases like basic social networks, where all friendships are

considered equal, or in unweighted transportation networks

where the existence of a route matters but not its distance or

cost.

D. Unsimple Graph

An unsimple graph is a graph that does not follow the rules

of a simple graph. This type of graph allows features that

simple graphs do not, such as self-loops or multiple edges

between the same pair of vertices. These additional features

make it possible to model more complex or layered

relationships. An unsimple graph is useful in situations where

two objects can be connected in more than one way, or where

an object can connect to itself. There are two common types of

unsimple graphs.

1. Multi Graph

The first is called a multigraph, where multiple edges

between the same pair of vertices are allowed, but self-

loops are not. This kind of graph can represent systems

like public transportation networks where two cities might

have several different bus or train lines connecting them.

2. Psudo-Graph

The second type is called a pseudograph, which

allows both multiple edges and self-loops. Pseudographs

are used in cases where self-connections are meaningful,

such as in feedback loops in a control system or in

situations where an entity might interact with itself, like a

machine that sends data back to itself.

Fig 2.2 Unsimple Graphs

(Source: Graph (Part 1) Slide by Dr. Rinaldi Munir)

In addition to classifying graphs as simple or unsimple,

graphs can also be categorized in other ways based on

different properties of their edges. One common classification

is based on whether the edges have direction. A directed

graph, or digraph, is a graph in which each edge has a

specified direction. This means that connections between pairs

of vertices do not necessarily work the same in both

directions. In a directed graph, edges are represented as arrows

pointing from one vertex to another, clearly indicating where

the connection starts and where it ends. Directed graphs are

especially useful for modeling systems where relationships

between entities are not always mutual.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 2.3 Directed Graphs

(Source: Graph (Part 1) Slide by Dr. Rinaldi Munir)

Another way graphs can be classified is by considering

whether edges carry additional information such as numerical

values. A weighted graph is a graph where each edge has an

associated number, known as a weight.

Fig 2.4 Directed Graphs

(Source: Graph (Part 1) Slide by Dr. Rinaldi Munir)

These weights can represent various attributes depending on

the system being modeled. In transportation networks, for

example, weights might indicate the distance or travel time

between locations. Weighted graphs are essential in

optimization tasks, such as finding the shortest path, the fastest

route, or the most cost-effective way to connect different

points in a network.

E. Graph Terminologies

There are several basic terms that are often used when

describing or working with graphs.

1. Adjacency (Neighbours)

One of the most important is neighbours. Two vertices

are considered neighbours if they are directly connected by

an edge. In an undirected graph, if vertex A is a neighbour

of vertex B, then vertex B is also a neighbour of vertex A.

In directed graphs, a neighbour could be incoming or

outgoing, depending on whether the edge points to or away

from the vertex. Understanding which vertices are

neighbours is essential in algorithms that explore a graph,

like breadth-first search (BFS) or depth-first search (DFS).

2. Adjacency List

There are also different ways to represent a graph in a

computer so that it can be stored and processed efficiently.

One common method is the adjacency list. In this method,

each vertex keeps a list of all the other vertices it is

connected to. This method is good for graphs that don’t

have too many edges, because it only stores what actually

exists and does not waste space on connections that aren’t

there.

3. Path

A path in a graph is a sequence of vertices where each

consecutive pair of vertices is connected by an edge. A

path describes a way to move through the graph from one

vertex to another by following the edges that link them.

The length of a path is measured by the number of edges it

contains. A path is called simple if no vertex appears more

than once along the path, except possibly the first and last

vertex if the path forms a cycle. Paths are important in

graph theory because they are used to study how vertices

are connected and how to travel between them within the

network.

Understanding these basic terms and representations is

essential because they provide the foundation for applying

various algorithms to graphs. The concepts of neighbours,

paths, and adjacency help in describing how vertices are

linked and how information or movement can pass through a

network. With these definitions in place, it becomes possible

to study algorithms that explore graphs, search for specific

vertices, or find optimal paths.

F. Breadth First Search

 Breadth-First Search (BFS) is one of the basic algorithms
used to explore or traverse graphs. This algorithm works by
visiting vertices level by level, starting from a chosen vertex
and visiting all of its neighbours first before moving on to the
neighbours of those neighbours. The idea is to explore all
vertices that are closest to the starting point before going
deeper into the graph.

Fig 2.5 BFS Vertex Traversal Order

(Source: Breadth First Search (BFS) and Depth First Search

(DFS) 2025 (Part 1) Slide by Dr. Rinaldi Munir)

In a BFS, vertices that are discovered but whose neighbours

have not been fully explored are kept in a queue. This queue

makes sure that vertices are visited in the right order, first

those that are closest to the starting point, then those that are

one step further, and so on. Each vertex is marked once it has

been visited, so the algorithm does not visit the same vertex

more than once.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The process of BFS can be visualized as forming a tree,

often called a BFS tree. The root of this tree is the starting

vertex, and the tree shows how other vertices are reached step

by step. This tree helps to show the layers in the traversal and

the order in which the vertices are visited.

Fig 2.6 BFS Tree

((Source: Breadth First Search (BFS) and Depth First

Search (DFS) 2025 (Part 1) Slide by Dr. Rinaldi Munir)

For example the traversal order for the BFS algorithm in

Figure 2.6 is as follows: A, B, C, D, E, F, G, H. Each step of

the algorithm can be recorded in a table that shows which

vertex is being visited, the contents of the queue, and which

vertices have been marked as visited. This makes it easier to

follow the process.

Breadth-First Search has been chosen in this study because

of its ability to find the shortest path in terms of the number of

stops. In the next section, the focus will shift to how this

algorithm is implemented to solve the problem of finding the

shortest path between two stations in an MTR network. The

method of representing the data, the design of the program,

and the steps of the algorithm in practice will be explained in

detail.

III. IMPLEMENTATION METHOD

This program was developed to find the shortest path, in

terms of stops, between two stations in an MTR network using

Breadth-First Search (BFS). The dataset for the MTR system

was taken from Kaggle. The original Kaggle data was

generated through accessing public data from the official

MTR Website and processed into a JSON format where each

station includes its name and a list of neighbouring stations.

The data structure makes it possible to represent the network

as a graph where stations act as nodes and direct connections

as edges.

The program is written in Python and consists of three

main files: node.py, station_loader.py, and route_finder.py.

Each file has a specific role in building and searching the

graph.

A. Data

The station data is stored in a JSON file that describes the

network as a list of station entries. Each entry represents a

station and contains two main attributes:

• “name”: A string that represents a station’s name.

• “neighbours”: A list of neighbouring stations,

where each neighbour is represented as a

dictionary containing its "name".

Fig 3.1 Example of one station entry

This format allows the network to be modeled as an

undirected, unweighted graph where the stations are nodes and

direct connections are edges.

B. Preprocessing

The preprocessing step involves building a graph from the

JSON data so that it can be used by the search algorithm. This

step uses the Node class and functions in station_loader.py.

The Node class is used to model each station in the

network. It contains:

• val: Stores the station’s name.

• neighbours: Stores a list of Node objects

representing the station’s direct connections.

Fig 3.2 Node class structure

In the preprocessing, station_loader.py is responsible for

reading the JSON file and building the graph. The main
functions in this file include:

• load_json_from_data_folder(json_filename):
Reads the JSON file from the data folder. It
handles errors such as file not found, invalid
format, or failure to parse the data.

• Load_station_nodes(json_filename): Converts the
JSON data into a list of Node objects. It first

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

creates a Node for each station and stores these in
a dictionary with station names as keys. Then, It
then links the stations by populating their
neighbours lists according to the connections
specified in the JSON data.

 During this process, each station becomes aware of its
neighbours, which allows efficient traversal during the search.
The use of a dictionary for mapping station names helps ensure
that stations can be accessed and linked quickly during
preprocessing.

Fig 3.3 File loader that converts the data from JSON format
into a list of Node objects

C. Main Algorithm

The search is carried out using the Breadth-First Search

(BFS) algorithm. After the data is loaded and the graph is

built, the program prompts the user to enter the starting station

and the destination station.

The BFS algorithm proceeds as follows:

• A queue is used to manage stations whose

neighbours need to be explored.

• A visited set keeps track of stations that have

already been visited to avoid revisiting them.

• A parent dictionary maps each station to the

station it was discovered from, which allows the

path to be reconstructed after the destination is

reached.

The algorithm begins at the starting station and explores all

its neighbours before moving on to the neighbours’

neighbours, ensuring that the shortest path is found in terms of

stops. When the destination is reached, the program uses the

parent mapping to trace back the path from the destination to

the start.
The output of the program includes:

• The sequence of stations on the shortest path.

• The total number of stops required to reach the
destination.

Fig 3.4 Output example

This shows the path with the minimum number of stops
from the start station to the destination.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 3.5 route_finder.py, main file with BFS algorithm to
find minimum stops between two MTR stations

IV. TESTING AND RESULTS

To verify the correctness of the program, the shortest paths

produced by the implementation were compared with results

obtained using the official tool provided by MTR Corporation,

the MTR Journey Planner. This online tool provides

recommended routes between stations in the MTR system,

including the sequence of stations and the total number of

stops.

The verification process was done by manually entering

the start and end stations in the MTR Journey Planner and

recording the suggested route. The output generated by the

program was then compared to this official result to ensure

that the path found matches the minimum number of stops as

recommended by MTR. This approach provides reliable

validation because the Journey Planner reflects the actual

design of the MTR network.
The first test case is from Ocean Park to Sheung Wan. This

case represents a direct journey along one line without
transfers. It checks whether the program correctly identifies the
shortest path with no unnecessary detours.

Fig 4.1 Test case 1 BFS program result

 The result of the first test case from the program is
identical to the result from the official route finder.

Fig 4.2 Test case 1 official result

 The second test case is from Prince Edward to Fortress Hill.
This case involves a route that requires changing lines. It tests
if the program can handle line transfers and still return the path
with the minimum number of stops.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 4.3 Test case 2 BFS program result

The result of the second test case from the program is
identical to the result from the official route finder.

Fig 4.4 Test case 2 official result

 The third test case is from Yau Tong to Lai King. This case
includes multiple transfers across different lines. It ensures that
the program is able to find the correct minimum-stop path even
in more complex routing situations.

Fig 4.5 Test case 3 BFS program result

 The result of the third test case from the program
differs from the result in the official website.

Fig 4.5 Test case 3 official result

The testing shows that the program produces correct results
for most cases when compared with the official MTR Journey
Planner. For the first test case, from Ocean Park to Sheung
Wan, the program correctly identifies the shortest path along
one line, with no unnecessary detours. The path found by the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

program is identical to the one recommended by the official
tool.

In the second test case, from Prince Edward to Fortress
Hill, the program is able to handle the route involving a line
transfer and still finds the path with the minimum number of
stops. The output matches the official result both in terms of
the sequence of stations and the total stops.

In the third test case, from Yau Tong to Lai King, the
program finds a valid path, but it differs from the official
recommendation. The route found by the program still provides
a correct connection between the two stations, but it may not be
the path with the fewest transfers or may take a different
transfer point compared to the MTR Journey Planner. This
suggests that while the program guarantees the minimum
number of stops using BFS, it does not account for factors such
as line preferences or transfer convenience, which might be
considered by the official tool.

V. CONCLUSION

This study demonstrates the use of the Breadth-First

Search (BFS) algorithm to solve the problem of minimum-

stop routing in an MTR network. By representing the stations

and connections as an unweighted, undirected graph, the

program is able to find the shortest path between two stations

in terms of the number of stops. The testing results confirm

that the program performs correctly in most cases, producing

paths that match the official recommendations of the MTR

Journey Planner. However, in certain complex routes, the

program may produce a path that differs slightly due to the

nature of BFS, which focuses purely on stop count without

considering other practical factors like line preferences or

transfer convenience. Overall, the BFS approach provides an

effective solution for minimum-stop pathfinding in

transportation networks.

VI. APPENDIX

The complete Hong Kong MTR minimum stop finder

using Breadth First Search algorithm can be found below.

https://github.com/mahesa005/HK-MTR-RouteFinder

 The video demonstration of the program can be

found below.

https://youtu.be/eaj7neN4IVI

VII. ACKNOWLEDGEMENT

 All praise and gratitude are offered to the presence of the
Almighty God, Allah Subhanahu wa Ta’ala, who has given the
author the opportunity to complete the paper entitled
"Minimum-Stop Routing in the MTR Network Using Breadth-
First Search". In addition, the author would like to express his
deepest gratitude to the lecturer in charge of the Discrete
Mathematics course, Rinaldi Munir, M.T., for the lessons and
motivation that have been given during the lecture.

REFERENCES

[1] MTR Corporation, "MTR System Map." [Online].
Available:
https://www.mtr.com.hk/en/customer/services/system_map.ht
ml. [Accessed: 26 May 2025].

[2] Kaggle, "Hong Kong MTR Network Dataset." [Online].
Available: https://www.kaggle.com/datasets/d1om3d3s/hong-
kong-mtr-network. [Accessed: 26 May 2025].

[3] MTR Corporation, "MTR Journey Planner." [Online].
Available: https://www.mtr.com.hk/en/customer/jp/index.php.
[Accessed: 20 June 2025].

[4] R. Munir, "Graf Bagian 1" IF1220 Matematika Diskrit.
[Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf. [Accessed: 18 June 2025].

[5] R. Munir, "Breadth First Search (BFS) and Depth First
Search (DFS) 2025 Bagian 1" IF1220 Matematika Diskrit.
[Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/13-BFS-DFS-(2025)-Bagian1.pdf. [Accessed: 20 June
2025].

STATEMENT OF ORIGINALITY

I hereby declare that this paper is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 20 Juni 2025

Mahesa Fadhillah Andre - 13523140

https://github.com/mahesa005/HK-MTR-RouteFinder
https://youtu.be/eaj7neN4IVI
https://www.mtr.com.hk/en/customer/services/system_map.html
https://www.mtr.com.hk/en/customer/services/system_map.html
https://www.kaggle.com/datasets/d1om3d3s/hong-kong-mtr-network
https://www.kaggle.com/datasets/d1om3d3s/hong-kong-mtr-network
https://www.mtr.com.hk/en/customer/jp/index.php
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf

